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A well-tested integral method has been used to calculate turbulent boundary- 
layer development for the distribution of external velocity given by Ucc ~ - 0 ~ ~ ~ .  

The results suggest that different values of the initial momentum thickness, so 
long as this is below some critical value, produce a range of equilibrium layers 
having widely different values of the form parameter G. For values of the initial 
momentum thickness greater than the critical value, layers are produced which 
proceed more or less rapidly to separation. These results provide a plausible 
explanation for conflicting experimental observations made in the past. 

Additional calculations for the flows U cc x-ol5 and Ucc ~ - 0 ~ ~  suggest that, in 
the fist case, a unique equilibrium condition is approached whatever the initial 
momentum thickness unless this exceeds some critical value; in the second case 
no equilibrium condition appears possible. 

1. Introduction 
In  the literature on turbulent boundary layers, the subject of equilibrium 

layers occupies an important place since the self-preserving character of the 
outer regions of such layers makes it possible to adopt plausible assumptions 
which greatly simplify the analysis. 

In  general terms, an equilibrium layer is one in which such non-dimensional 
parameters as H ,  cf, etc., vary only slowly with distance from the origin; more 
specifically it is one in which the non-dimensional velocity defect ( U  - u)/UT, 
expressed as a function of y/S, remains closely invariant with downstream 
distance. 

A measure of the velocity defect is provided by the form parameter G, intro- 
duced by Clauser (1954) and defined by 

G is simply related to the normal form parameter H by 

G = T / ( i )  H-1 c * . 
If G is to remain constant with downstream distance the pressure force acting 
on the boundary layer must remain in a constant ratio to the skin-friction force, 
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i.e. the parameter 6*i-L1dp/dx must remain constant. This parameter has been 
given the symbol n or p; we shall use 7 ~ .  

Now, there seems to be a considerable degree of unanimity concerning the 
relationship between 7~ and G. The analysis of Mellor & Gibson (1963, 1966) leads 
to a definition of this relationship in numerical terms, and an analytic approxima- 
tion to their result has been given by Felsch (1965). A very similar analytic 
expression has been suggested by Nash (1965). Numerous comparisons with 
experiment have shown that Mellor & Gibson’s relationship provides a 
satisfactory correlation between measured values of 7~ and G in equilibrium and 
near-equilibrium conditions (Felsch 1965; Bradshaw 1966). 

Where considerable doubt appears to exist is in the relationship connecting 
the value of C with the exponent n in the expression U = cxn describing the 
distribution of the external velocity. In  laminar flow such distributions yield the 
well-known similar solutions and in turbulent flow the restricted degree of 
similarity implied by the velocity-defect law. Mellor & Gibson (1966) propose a 
relationship between G and n which is effectively unique, though there is a minor 
dependence upon Reynolds number. Townsend‘s (1961) analysis on the other 
hand leads to the conclusion that, for the larger negative values of n, two alterna- 
tive equilibrium layers Phould correspond to any given value of n. Mellor (1966) 
professes to have disproved Townsend’s result and Bradshaw (1966) argues that 
the alternative developments arise in Townsend’s analysis because of the 
matching condition imposed between inner and outer solutions for the velocity 
distribution. He concludes that the balance of probabilities is in favour of a 
single equilibrium layer corresponding to a given pressure gradient. 

On the experimental side, the situation is certainly no clearer. With n = - 0.23, 
Stratford (1959) set up a layer which was everywhere just on the point of separa- 
tion, with skin friction effectively equal to zero. In  such a layer Mellor & Gibson 
predict a value of H of 2-35 at a Reynolds number of lo5, and their predicted 
profile is in fair agreement with Stratford’s measurements. On the other hand, 
Clauser (1954), with exponents quoted by Townsend (1961) as approximately 
- 0.24 and - 0.25, obtained layers which were by no means close to separation 
with values of H of approximately 1-5 and 1.8. At the same time he reported 
considerable difficulty in establishing equilibrium conditions and referred to the 
problem of downstream stability, which has not apparently been encountered 
by subsequent experimenters. 

In  a very detailed and apparently reliable set of experiments, Bradshaw ( 1966) 
obtained equilibrium layers with H values of about 1.6 and 1.4, for values of n of 
- 0.255 and - 0.15, respectively, and reported no difficulty in setting up these 
flows. Finally, in experiments in sink flow (77 = - cx-l) ,  which is admittedly a 
rather different and special case, Launder & Jones (1969) report not a single 
equilibrium boundary layer, but a range of layers with an essentially self- 
preserving character. 

These experimental results certainly provide no conclusive evidence in favour 
of the unique relationship between n and G that follows from the analysis of 
Mellor & Gibson if the relatively minor effect of the Reynolds number in their 
analysis is neglected; in fact, if the experimental evidence were taken at its face 
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FIGURE 1. Velocity distribution used in most of the calculations. 
, o  = 3-0'255; a, Bradshaw's measurements. 

value, it  would suggest that a whole range of equilibrium layers should exist for 
values of n close to - 0.25. 

Bradshaw (1966) has pointed out the shortcomings of much of the earlier 
experimental work and concludes that these are probably sufficient to account 
for the apparently anomalous results. He supports his conclusion in a later 
report (Bradshaw 1967) with calculations performed using the method of Brad- 
shaw, Ferriss & Atwell (1967). These suggest that, for U cc x-0255, auniqueequili- 
brium condition is approached by boundary layers starting with the same value 
of UBlv at different streamwise stations. However, it  is the present author's 
opinion that these results cannot be considered conclusive, partly because the 
calculations are insufficiently precise and comprehensive, and partly because the 
method of Bradshaw et at. fails in some cases to predict the runaway behaviour 
that is characteristic of the approach to separation. 

The results of the present calculations, which have been performed by the 
integral method of Head & Patel (1970), areat variance with those of Bradshaw 
and indicate, in fact, that for the particular case n = - 0.255 a whole range of 
equilibrium (or pseudo-equilibrium) layers is possible, with values of n and G 
that satisfy Nash's n-G relation but depend upon the value of UBlv a t  some 
arbitrary initial station. They also indicate that separation ensues if some 
critical value of UBlv is exceeded. 

Evidence for the trustworthiness of the calculation method used here is 
provided by the results presented in the original report by Head & Patel 
(1970), where the equilibrium developments measured by Bradshaw are very 
accurately predicted, as well as the separating layers measured by Schubauer & 
Spangenberg. 

2. Calculations 
Calculations were performed for the more severe of Bradshaw's (1966) two 

adverse-pressure-gradient cases. As figure 1 indicates, the distribution of the 
external velocity conforms closely to B = Z-0255, where B = UlU, and 5 = xlc. 

1-2 
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FIGURES 2(a)-(c). For legend see facing page. 
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U, was given by Bradshaw as 110 ftls in standard conditions and c was taken as 
53.7 in. to eliminate any constant of proportionality. 

Using the method of Head & Pate1 (1970), the development of the boundary 
layer was calculated for an initial H of 1.667 and initial values of 0 which were 
1-0, 1.25, 1.5, 1.75 and 2.0 times the initial value measured by Bradshaw. The 
results of the five sets of calculations, which were performed by hand, are shown 
in figures 2 (a)-(d) with Bradshaw's measurements for comparison. 

3. Discussion 
With the same initial values of H and 0 as were measured by Bradshaw, the 

subsequent developments of H ,  8, cr and G are reasonably well predicted 
though there are minor discrepancies in H and G .  

When we look at the results of the calculations with initial momentum thick- 
nesses 1.25 and 1.5 times Bradshaw's measured value we see no radical change in 
behaviour, and it is evident that the boundary layer has effectively achieved 
equilibrium conditions, to within the accuracy of the present method, a t  some 
distance downstream. The rate of approach would undoubtedly have been 
hastened by a more appropriate choice of initial H .  

With initial momentum thicknesses 1.75 and 2.0 times the measured value we 
see a very different type of behaviour, with the boundary layer proceeding to 
separation, and it seems likely that a highly critical condition should exist for 
some initial value of the momentum thickness between 1-5 and 1.75 times the 
experimental value. In  this condition the phenomenon of downstream instability 
reported by Clauser would appear inevitable. Equally, the present calculations 
would appear to explain the ease with which Bradshaw established equilibrium 
conditions, since his initial momentum thickness evidently lies well within the 
range for complete downstream stability. 

Bradshaw (1966) has suggested from his interpretation of the turbulent energy 
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equation that such runaway behaviour as that demonstrated by the upper curves 
in figure 2 (a)  (and corresponding curves in the other figures) is unlikely to occur, 
but the present calculations predict such behaviour quite unequivocally, and it 
is certainly not inconsistent with our general experience of separating flows. 

It was a t  first expected that, with increased initial momentum thickness, the 
results would represent no more than an approximation to  equilibrium con- 
ditions, possibly with G substantially constant but with the virtual origin of the 
boundary layer displaced from the origin of the flow. In  fact, however, it  will be 
seen from figure 2 ( b )  that any shift in origin was so small as to be effectively 
negligible. 

So far, then, as the present calculations are concerned the three different 
layers with initial momentum thicknesses 1.0, 1-25 and 1-5 times the experimen- 
tal value have equal claim to be considered equilibrium layers, and a range of 
such layers evidently exists. Whether or not only one of these layers constitutes 
a true equilibrium layer in some strict academic sense can scarcely be considered 
relevant to the experimental situation. 

4. Subsequent calculations 
Following the calcuIations for n = - 0.255 it  was thought worthwhile to obtain 

additional results for n = - 0.15 and n = - 0.35. These are shown in figures 
3 (a)  and ( b ) ,  and rather contrasting behaviour will be observed in the two cases. 
For n = -0.15 it appears that, so long as the initial value of 8 is below some 
critical value, which is in the neighbourhood of 10 times Bradshaw’s initial value, 
there is a slow approach to what is evidently a unique equilibrium condition. 
On the other hand, for n = - 0.35, there is a slow but sustained increase in the 
value of G even for the smallest initial value of the momentum thickness con- 
sidered, which suggests that equilibrium is impossible. 

For these computer calculations a fixed initial value of H* (= (8-  a*)/@ was 
assumed for convenience. This leads to slightly different initial values of H for 
the different initial momentum thicknesses. 

5.  Conclusions 
The present calculations for n = - 0.255 indicate that a wide range of equili- 

brium (or pseudo-equilibrium) layers is possible for this particular value of n, 
with the value of G depending upon the momentum thickness a t  some arbitrary 
initial station. Above some critical value of the initial momentum thickness, 
however, the boundary layer fails to achieve equilibrium and instead proceeds 
more or less rapidly to separation. These results, while not predicted by accepted 
theories, may well explain outstanding discrepancies in past experiments. 

From the limited results obtained for other values of n it seems likely that 
unique equilibrium conditions do in fact exist, for values of - n less than 0.255 
although the approach to equilibrium may be extremely slow if the initial value 
of the momentum thickness is not suitably chosen. The results for n = -0.35 
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FIGURE 3. Calculated development of G and H for different initial velues of 8. (a) = - 0.15. 
( b )  n = - 0.35. -.-, present calculations; 0,  Bradshaw’s measurements. Values on curves 
indicate ratio of initial value of Re0 to Bradshaw’s initial value (Re0 = 10 100). 
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confirm that equilibrium is impossible for - n greater than 0.255, whatever the 
initial momentum thickness. 

The author is indebted to Dr Kirit Yajnik for assistance with the original 
version of this paper and to Dr A. J. Vermeulen for performing the additional 
computations. 
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